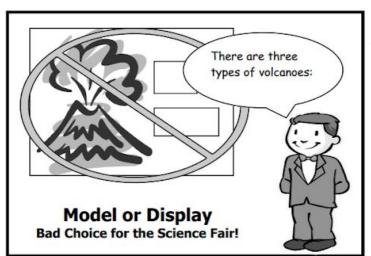
2020 Science Fair Planning Guide

TABLE OF CONTENTS


CONTENT	PAGE
Types of Science Projects	3
What is the Scientific Method?	4
Choosing a category that interests you	5
STEP 1: Coming up with a good question	6
STEP 2: Doing the research and forming a hypothesis	7
Now it's your turn: Finding the Sources and writing the hypothesis	8
STEP 3: Testing the hypothesis by doing the experiment	9
How do you collect data?))
Science Project Guide	12-14
STEP 4: Presentation	15
What those judges are looking for	16
Science Fair Rules and Regulations	רו

All Hilburn Academy and York Elementary students are eligible to participate in the optional Science Fair. Projects are due on March 5. Students will bring projects to the Hilburn Academy cafeteria for judging during our STEAM Night from 6:00-7:30pm. Students must be present to participate and to win awards.

Please submit your name and information at <u>http://bit.ly/2020sf</u> if you plan to participate in the 2020 STEAM Night Science Fair.

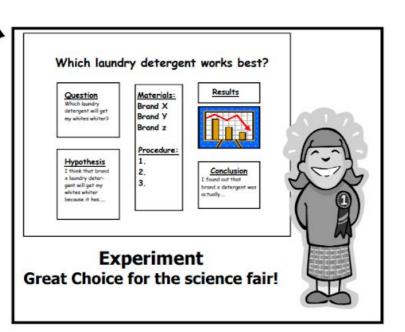
TYPES OF SCIENCE FAIR PROJECTS

There are two types of science projects: Models and Experiments. Here is the difference between the two:

<u>A Model, Display or</u> <u>Collection:</u>

Shows how something works in the real world, but doesn't really test anything

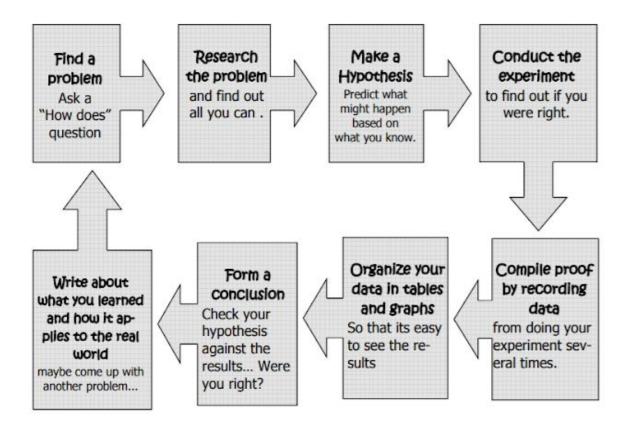
Examples of display or collection projects can be: "The Solar System", "Types of Dinosaurs", "Types of Rocks", "My gum collection..." Examples of models might be: "The solar system" or "How an Electric Motor Works", "Tornado in a Bottle"


COOL !!!!! DO THIS

An Experiment:

Lots of information is given, but it also has a project that shows testing being done and the gathering of data.

Examples of experiments can be: "The Effects of Detergent on the Growth of Plants", "Which Paper Towel is more Absorbant" or "What Structure can Withstand the Most Amount of Weight"


You can tell you have an experiment if you are testing something several times and changing a variable to see what will happens. We'll talk about variables later....

What Type of Project Should You Do?

Even though you can learn a lot from building a model or display, we recommend that you do an EXPERIMENT! Why? Well, they are fun, they are more interesting and most of all, they take you through the SCIENTIFIC METHOD, which is the way real scientists investigate in real science labs!

What is the Scientific Method?

Choosing a Category that Interests You...

All great projects start with great questions, but before you get started on a great question you need to pick a subject or topic that you like. There are three different categories of the Science Fair to choose from. They are:

LIFE SCIENCE: This category deals with all animal, plant and human body questions that you might have and want to do an experiment about. Remember that it is against Science Fair Rules to intentionally hurt an animal during an experiment. If you are dealing with animals, please let an adult assist you. It is okay to do experiments on plants, as long as they don't belong to someone else, like don't do an experiment on your mom's rose bushes unless you ask her first... Life science also includes studying behaviors, so it's a perfect category to try taste tests, opinion surveys, animal behavior training (or even training behavior in humans...like baby brothers or sisters...)

<u>PHYSICAL SCIENCE</u>: If you like trying to figure out how things work, then this is the category for you! It includes topics about matter and structure, as well as electricity, magnetism, sound, light or anything else that you might question, "How does it work and what if I do this to it, will it still work?" But remember, you always need to ask an adult first (and always make sure there is one of those adult guys with you when you try it.) Physical Science also includes the composition of matter and how it reacts to each other. These are the science experiments that may have bubbling and oozing going on, like figuring out what is an acid and what is a base. It is a perfect category to try to mix things together to see what will happen. Again, if you are experimenting with possibly dangerous things, you need to recruit an adult to help you out.

<u>EARTH AND SPACE SCIENCES</u>: This category is really awesome because it covers all sorts of topics that deal with the Earth or objects in space. This includes studying weather, Geology (which is the study of everything that makes up the Earth, like rocks, fossils, volcanoes, etc..), and the study of all that is in space, including the stars, our sun and our planets. Unfortunately this topic is also where most kids mess up and do a collection or model project instead of an "Experiment," so be careful!!!

NOW IT'S YOUR TURN:

Write down your favorite Science Fair Category and what it is you want to learn more about:

My favorite category is	
Earth and Space Science) I want to do an	experiment involving:

 	 	,

STEP 1: Coming Up with a Good Question...

Now that you have picked out a topic that you like and that you are interested in, it's time to write a question or identify a problem within that topic. To give you an idea of what we mean, you can start off by filling in the question blanks with the following list of words:

The Effect Question:		
What is the effect of	on	_?
sunlight	on the growth of plants	
eye color	pupil dilation	
brands of soda	a piece of meat	
temperature	the size of a balloon	
oil	a ramp	
	Affect Question:	
How does the	affect	_?
color of light	the growth of plants	
humidity	the growth of fungi	
color of a material	its absorption of heat	
The Which/What a	and Verb Question:	

Which/What	(verb)	?
paper towel	is	most absorbent
foods	do	meal worms prefer
detergent	makes	the most bubbles
paper towel	is	strongest
peanut butter	tastes	the best

NOW IT'S YOUR TURN:

Create your Science Fair question using either the "Effect Question", the "How does Affect Question" or the "Which/What and Verb Question":

-----?

STEP 2: Doing the Research and forming a Hypothesis

So, you've picked your category and you've chosen a topic.... You even wrote a question using our fill in the blank template. Now, it is time to research your problem as much as possible. Becoming an expert at your topic is what real scientists do in real labs.

How do you become an expert?

YOU READ

READ about your topic. READ encyclopedias. READ magazine articles and books from the library. READ articles from the internet. Take note of any new science words you learn and use them. It makes you sound more like a real scientist. Keep track of all the books and articles you read. You'll need that list for later.

YOU DISCUSS!

Talk about it with your parents. Talk about it with your teachers. Talk about it with experts like Veterinarians, Doctors, Weathermen or others who work with the things you are studying. Sometimes websites will give you e-mail addresses to experts who can answer questions.... But again, do not write to anyone on the internet without letting an adult supervise it. (*hint: take pictures of yourself interviewing people)

Whew...

Then when you think that you can't possibly learn anymore and the information just keeps repeating itself...you are ready to...you are ready to...

Write a Hypothesis

Now it is time to PREDICT what you think will happen if you test your problem. This type of "SMART GUESS" or PREDICTION is what real scientists call A HYPOTHESIS. Using this fancy word will amaze your friends and will have you thinking like a full fledged scientist. So how do you begin? Well, just answer this very simple question:

What do you think will happen, even before you start your experiment?

Example Problem: Which Paper Towel is more absorbent?

Example Hypothesis: I think Brand X will be more absorbent because it's a more popular brand, it is thicker and the people I interviewed said that the more expensive brands would work better.

(This hypothesis not only predicts what will happen in the experiment, but also shows that the "Scientist" used research to back up his prediction.)

Now it's your turn:

Write down the problem and create a hypothesis based on what time you have researched:

Problem:	
Research:	My problem is about this subject:
Books:	
Internet Sites:	
People I talked to about my topic:	
Some important points that I learned about my topic are:	
Hypothesis:	I think that
	(will happen) because (my research shows)

Step 3: Testing your Hypothesis by doing an experiment

Now we've come to the good part. The part that all scientists can't wait to get their hands on... you guessed it... <u>The EXPERIMENT</u>! Designing an experiment is really cool because you get to use your imagination to come up with a test for your problem, and most of all, you get to prove (or disprove) your hypothesis. Now Science Fair Rules state that you cannot perform your experiment live, so you'll have to take plenty of pictures as you go through these seven very simple steps.

FIRST, Gather up your materials. What will you need to perform your experiment? The safest way to do this is get that adult you recruited to help you get the stuff you need. Oh, did we mention to take pictures or draw pictures of your materials. This will come in handy when you are making your board display.

SECOND, Write a PROCEDURE. A procedure is a list of steps that you did to perform an experiment. Why do you need to write it down? Well, it's like giving someone a recipe to your favorite dish. If they want to try it, they can follow your steps to test if it's true. Scientists do this so that people will believe that they did the experiment and also to let other people test what they found out. Did we mention to take pictures of yourself doing the steps?

THIRD, Identify your variables. The variables are any factors that can change in an experiment. Remember that when you are testing your experiment you should only test one variable at a time in order to get accurate results. In other words, if you want to test the effect that water has on plant growth, then all the plants you test should be in the same conditions. These are called controlled variables: same type of dirt, same type of plant, same type of location, same amount of sunlight, etc. The only variable you would change from plant to plant would be the amount of water it received. This is called the independent or manipulated variable. The independent variable is the factor you are testing. The results of the test that you do are called the dependent or responding variables. The responding variable is what happens as a result of your test. Knowing what your variables are is very important because if you don't know them you won't be able to collect your data or read your results.

FOURTH, TEST, TEST, TEST. Remember that the judges expect your results to be consistent in order to be a good experiment, in other words, when you cook from a recipe you expect the outcomes to be the same if you followed the directions (or procedure) step by step. So that means you need to do the experiment more than once in order to test it properly. We recommend five times or more. More is better! Don't forget to take pictures of the science project being done and the results.

FIFTH, Collect your DATA. This means write down or record the results of the experiment every time you test it. Be sure to organize it in a way that is easy to read the results. Most scientists use tables, graphs and other organizers to show their results. Organizing makes the results easy to read, and much easier to recognize patterns that might be occurring in your results. (Besides, it impresses the judges when you use them.) But don't make a graph or table because we asked you to, use it to benefit your project and to help you make sense of the results. There is nothing worse than having graphs and tables that have nothing to do with answering the question of a science project.

SIXTH, Write a Conclusion. Tell us what happened. Was your hypothesis right or wrong or neither? Were you successful? Did it turn out okay? Would you change anything about the experiment or are you curious about something else now that you've completed your experiment? And most of all, TELL WHAT YOU LEARNED FROM DOING THIS.

SEVENTH, Understand its Application. Write about how this experiment can be used in a real life situation. Why was it important to know about it?

Important Notes on How to Collect Data

- Keep a science journal: A science journal is a type of science diary that you can keep especially if your experiment is taking place over a long period of time. We suggest you do that if your experiment is over a period of a week or more. In your journal you can record observations, collect research, draw and diagram pictures and jot down any additional questions you might have for later.
- Have the right tools to do the job: Make sure you have the stuff you need to take accurate measurements like rulers, meter tapes, thermometers, graduated cylinders or measuring cups that measure volume. The recommended standard of measurement in science is metric so if you can keep your measurements in meters, liters, Celsius, grams, etc, you are doing great!
- Tables, charts and diagrams are generally the way a good scientist like you would keep track of your experiment trials. Remember you are testing at least 5 times or more. A table is organized in columns and rows and ALWAYS has labels or headings telling what the columns or rows mean. You will probably need a row for every time you did the experiment and a column telling what the independent variable was (what you tested) and the responding variable (the result that happened because of the independent variable)
- Be accurate and neat! When you are writing your tables and charts please make sure that you record your data in the correct column or row, that you write neatly, and most of all that you record your data as soon as you collect it SO YOU DON'T FORGET WHAT HAPPENED!!!! Sometimes an experiment might be hard to explain with just a table, so if you have to draw and label a diagram (or picture) to explain what happened, it is recommended that you do.
- Use the right graph for your experiment. There are all types of graph designs, but these seem to be easy to use for science fair experiments.
 - Pie graphs are good to use if you are showing percentages of groups.
 Remember that you can't have more than 100% and all the pieces need to add up to 100%. This type of graph is great if you are doing surveys.
 - **Bar graphs** are good to use if you are comparing amounts of things because the bars show those amounts in an easy to read way. This way the judges will be able to tell your results at a glance. Usually the bars go up and down. The x axis (or horizontal axis) is where you label what is being measured, (like plant A, B, C and D) and the y axis (or vertical axis) is labeled to show the unit being measured (in this case it would be centimeters that the plant grew)
 - Line graphs are good to use if you are showing how changes occurred in your experiments over time. In this particular case you would be using the x axis to show the time increments (minutes, hours, days, weeks, months) and then you would use the Y axis to show what you were measuring at that point in time.

Now it's your turn!

Materials: (Take Pictures!)

List the materials that you will need for your science experiment.

Variables:

List the variables that you will control, the variable that you will change and the variables that will be the results of your experiment:

My controlled variables are (the stuff that will always stay the same):	My independent variable is (this is the thing that change from one experiment to the next, it is what you are testing):

Hypothesis:

Procedure: (the steps...Don't forget to take pictures.)

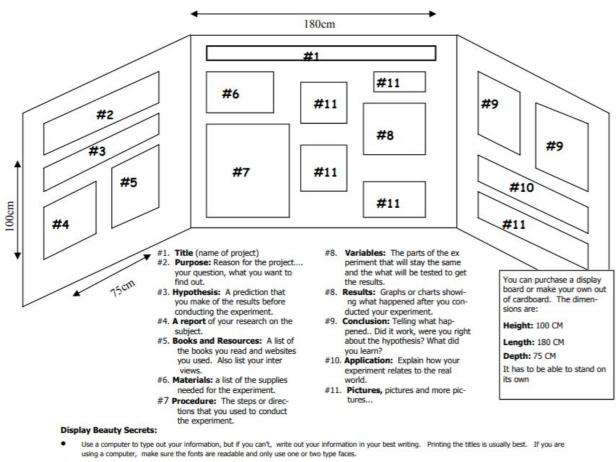
List the steps that you have to do in order to perform the experiment here:

). 2. 3. 4. 5.

Data:

Design a table or chart here to collect your information.

Conclusion:


Now tell us what you learned from this and if you were able to prove your hypothesis. Did it work? Why did it work or why didn't it work? What did the results tell you? Sometimes not being able to prove a hypothesis is important because you still proved something. What did you prove?

Application:

(How does this apply to real life?) It's important to know about this because.....

Step 4: The Presentation

This is an example of a neat looking Science Fair Display Board. **It is just an example.** Depending on your information and the amount of pictures, tables and graphs, you may have a different layout. Just make sure it is neat.

- Use spray adhesive or glue stick to paste up your papers. It is less messy
- Mount white paper, pictures, graphs and tables on colored papers (making sure the colored paper is larger so it creates a border for the white paper.) Do not

	the judges are looking r: (Total = 25 points)	What you should do the day of the Science Fair:
judge. Ju	f kids are scared of talking to a ust imagine the judge as a fellow st who just wants you to share what you learned!	Relax, smile and have fun! Remember, you are the expert, but if you are a little nervous, we listed the things you need to do during the presentation!
Helpful H		ou will be sharp! Dress nice, be polite and speak clearly. You will show the ve confidence! Don't forget to make eye contact!
	Display well organized. (2 points)	Stand to the side of the display so that the judge can see your hard work!
	Clearly stated title, purpose and hypothesis. (2 points)	Introduce yourself, point out the title of your display and tell the judge why you chose to study this. State your problem that you studied (your question). Also tell them about your hypothesis (what you think might happen).
	Background information on science topic and sources. (2 points)	Share your research. Talk about the sources (books, websites and interviews) that helped you understand your topic.
	Clearly explained procedures. (3 points)	Tell about your experiment, the steps you took to do it. Be sure to use science vocabulary.
	Measurable data and trials. (3 points)	Be sure to show them that you tested your experiment multiple times. Show them all of the cool graphic organizers that you made, like your tables and charts.
	Effective analysis of data and clearly stated results (graphs, charts, tables) (3 points)	Be sure and explain what your data means. Make sure you can read your graphs and tables. Let them know if you were surprised by the results, or if you knew what would happen because you studied about it.
	Knowledge of topic with use of vocabulary at grade level. (3 points)	Make sure you sound like an expert at your topic. Always use the appropriate vocabulary, especially by using words from the Scientific Method like: Problem, Hypothesis, Procedure, Results and Conclusion.
	Well-developed conclusion based on results. (3 points)	Let the judge know if you were right about your hypothesis. What did you conclude about your problem? Did you find another problem to investigate based on what you learned?
	Stated real life connections. (2 points)	Judges love this one, because it gives a real world purpose to your topic. It makes you sound like a real scientist in a real lab which you are!! "My experiment about paper towel absorbancy could help people save money by buying the right type of paper towels"
	Effective closure of presentation. (2 points)	If you get lost or forget where you are, look at your display and follow it piece by piece. It is better to discuss everything than to forget to tell the judge something. When you are done, shake hands with the judge and thank them for their time!

Science Fair Rules and Regulations

SAFETY RULES

1. Number one rule... think safety first before you start. Make sure you have recruited your adult to help you.

2. Never eat or drink during an experiment and always keep your work area clean.

3. Wear protective goggles when doing any experiment that could lead to eye injury.

4. Do not touch, taste or inhale chemicals or chemical solutions.

5. Respect all life forms. Do not perform an experiment that will harm an animal.

6. All experiments should be supervised by an adult!

7. Always wash your hands after doing the experiment, especially if you have been handling chemicals or animals.

8. Dispose waste properly.

9. Any project that involves drugs, firearms, or explosives are not permitted.

10. Any project that breaks district policy, and/or local, state or federal laws are not permitted.

11. Use safety on the internet! Never write to anyone without an adult knowing about it. Be sure to let an adult know about what websites you will be visiting, or have them help you search.

12. If there are dangerous aspects of your experiment, like using sharp tools or experimenting with electricity, please have an adult help you or have them do the dangerous parts.

SCIENCE FAIR RULES

1. Only one student per entry, you can't work in a team of two until you get to middle school. 2. Adults can help, in fact we want them to get involved. They can help gather materials, supervise your experiment and even help build the display. They just can't be with you during the judging.

3. Experiments are recommended over collections and models. You will not score very high unless you do an experiment, so save the models and collections for a class project. You will be judged on the use of the Scientific Method.

4. You cannot bring the materials of your experiment for the display or perform the experiment live. You will only be judged on your presentation and board. You can however, mount things on your board in a type of 3D display, but remember that your board has to be able to stand by itself, so don't get carried away. If you do mount things on the board, try not to mount something expensive that you bought and make sure you have things mounted securely so they don't fall off. YOU MAY NOT MOUNT ANY FOOD OR ORGANIC MATERIALS! 5. Displays must be on display boards or can be made with cardboard. They must stand alone. See the display making page if you need a diagram.

6. Limit your presentation to 10 minutes at the most, 5 minutes on speaking and the rest for the judges to ask questions.

7. Respect all adults involved in the fair. All decisions of the judges and science fair committee are final.